Pdf: Útpályaszerkezetek homogén szakaszképzésének tapasztalatai
Bevezetés
Az útpályaszerkezetek megerősítés méretezésének fontos momentuma a tervezési szakasz homogén alszakaszokra bontása. Hazánkban gyakori a több ütemben végrehajtott útépítés és szélesítések miatti változatos pályaszerkezet, a felújítások során alkalmazott különböző technológiák, vagy éppen az eltérő altalaj az út hossztengelye mentén a pályaszerkezet teherbírásának inhomogenitását eredményezheti. A homogenitás ismert és ismeretlen tényezőktől egyaránt függő, mérhető vagy számítható jellemzőkkel leírható jelenség. Egy adatsort akkor nevezünk homogénnek, ha az adatok a mintavételezés során azonos szabályszerűséget, eloszlást követnek [Gálai, 2007]. A tervezési szakaszt számos paraméter alapján lehet homogén alszakaszokra bontani, pl.: IRI, teherbírás, behajlási teknő paraméterek, stb. A homogén szakaszképzésnek azért van nagy jelentősége a megerősítés méretezés során, mert egy homogén szakaszon belül azonos vastagságú megerősítést alkalmazunk.
A tárcsaközép-süllyedéseken alapuló homogén szakaszképzés gyakorlata
A jelenleg érvényben lévő szabályozásunk [ÚT 2-1.202; 2005] szerint a tervezési szakasz homogén szakaszokra bontását a terherbíró-képesség meghatározásakor rögzített központi behajlások alapján végezzük. A központi behajlás, vagy másnéven tárcsaközép-süllyedés a terhelő tárcsa középpontja alatt, azaz a terhelés tengelyében mért behajlás. A méretezés első lépese a vizsgált adatsor kiugró értékű elemeinek eltávolítása. A kiemelkedően magas, illetve alacsony értékeket (pl.: az átlagtól való eltérés az adatsor szórásának kétszeresével) ki kell szűrni, és el kell vetni. A kiugró értékek rendszerint valamilyen lokális pályaszerkezeti hiba következményei. A kiszűrésnek azért van jelentősége, mert a kiugró értékek a mértékadó behajlás meghatározása során hamis értékhez vezethetnek. A mértékadó behajlás értékének ismeretében definiálható a megerősítő réteg vastagsága. A mértékadó behajlást az előírás a következőképpen definiálja, „Egy homogén teherbírású útszakaszt jellemző behajlás. A mért behajlások alapján, az egységtengelyterhelésre, + 20°C-os aszfaltburkolat-hőmérsékletre átszámított behajlás, amely a behajlások alapsokaságát egy értékkel adott biztonsági szinten jellemzi.” Az említett előírás kimondja, hogy homogén teherbírású útszakasznak azon szakaszok tekinthetők, amelyek tárcsaközép-süllyedésének variációs koefficiense, varianciája nem haladja meg a 0,5-es értéket. Amennyiben ez a feltétel nem teljesül, a homogén szakaszokat újra ki kell osztani. A tervezési szakasz teherbírásnak homogenitását akkor lehet vizsgálni, ha a két egymást követő mérési pont szelvényei között 100 m-nél kisebb távolság van. [Boromisza, 1997] Hazai szabályozásunk pl.: a svájci előíráshoz [SN 640 733b] képest a variancia értékét illetően meglehetősen engedékeny. Az előírás ezen érték meghatározásán kívül semmilyen követelményt nem nevez meg, amely a homogén szakasz képzésének folyamatát egzaktabbá tenné.
Svájcban a pályaszerkezetek megerősítési módszereit az SN 640 733b „Erhaltung von Fahrbahnen” című szabvány részletezi, melyben a méretezés alapját a magyar szabályozáshoz hasonlóan a behajlásmérés képezi. A burkolat teherbíró-képességének megállapítására az előírás elsősorban a Benkelman-féle behajlásmérőt vagy a Lacroix mérőkocsit javasolja, de nem zárja ki olyan módszerek alkalmazását sem, amelyek eredményei és az említett eljárásokkal meghatározott eredmények között szoros korreláció van. A megerősítés célja, hogy a pályaszerkezet adott feltételek mellett egy gazdaságilag és műszakilag egyaránt optimális megoldással hosszabb élettartam elérésére legyen képes.
A két előírás közös vonása, hogy a tervezési szakaszt homogén alszakaszokra bontják, és a méretezést minden egyes szakaszra külön elvégzik. A svájci szabvány szerint egy útszakasz akkor tekinthető homogénnek, ha a választott mérési eredménysor varianciája nem haladja meg a 0,35 értéket, ami szigorúbb, mint a magyar határérték. A homogénszakasz minimális hosszának a 300 métert jelöltek ki, ettől rövidebb szakasz csak különleges esetekben alkalmazható.
Problémafelvetés
A magyar előírásban fellelhető módszert követve gyakran találkozhatunk azzal a problémával, hogy ha a tárcsaközép-süllyedések szórása túl nagy, akkor a központi behajlások variációs koefficiensét figyelembe véve akár 5-10 km hosszú szakasz is homogénnek tekinthető. A szabályozás sem a homogén szakaszok minimális, sem a maximális hosszára nem tartalmaz kritériumokat. 3 – 500 m-nél rövidebb homogén szakaszok alkalmazása gyakorlati szempontból nem célszerű, ugyanis ilyen rövid szakaszokra a technológiát kicserélni nem gazdaságos. [Vasvári, 2012]
A homogén szakasz képzésének többféle módszere ismert, pl.: variációs koefficiens, mozgó átlag, kumulatív-szumma módszer, Bayes-féle algoritmus, stb. Jelen cikk célja a jelenlegi előírásban ismertetett és más módon meghatározható homogén szakaszok határai közötti különbségek ismertetése. A cikk ezen kívül a kumulatív-szumma módszerével és a mozgó átlagok abszolút differenciájának módszerével végzett homogén szakaszképzést, valamint a pályaszerkezet behajlásból levezethető különböző jellemzők szerinti homogén szakaszképzés eredményeinek összehasonlítását tárgyalja.
Mintapélda
A homogén szakaszképzés problémáinak feltárása közben több útszakasz homogenizálása készült el. A cél annak a megállapítása volt, hogy az említett hiba csak bizonyos úttípusoknál jelentkezik, vagy úttípustól teljesen független és egyöntetűen jellemzi azokat.
Az alábbi példa egy 4 számjegyű út 16,1 km-es szakaszának homogén szakaszokra bontását mutatja be. A központi behajlások átlaga a kiugró értékek kiszűrése előtt 823 μm-re adódott. Az értékek szórása 301 lett, az adatsor variációs tényezője 0,37. Az előírásunknak megfelelően kihagyásra kerültek azok a mért behajlásértékek, amelyek a vizsgált szakasz átlagos behajlásától a szórás értékének kétszeresétől jobban eltértek. A kilógó értékek eltávolítása után ismét meghatározásra került a három jellemző. Ekkor a szakasz behajlásának átlaga 785 μm, az értékek szórása 252, míg a vizsgált mérési eredmények varianciája 0,32 lett. A jelenlegi szabályozás szerint a behajlások varianciája nem éri el a kritériumként megadott értéket, tehát a vizsgált szakasz egy homogén szakasznak tekinthető, 1. táblázat.
Jellemzők | Kiugró értékek eltávolítása | |
---|---|---|
előtt | után | |
Átlag | 823 | 785 |
Szórás | 301 | 252 |
Variancia | 0,37 | 0,32 |
Az 1. ábra mutatja az átlagtól a megengedettnél jobban eltérő értékeket. Az ábrán a vízszintes piros szaggatott vonal jelöli az átlagtól való eltérés határértékét, rózsaszín oszlopok a kilógó értékeket, a kék oszlopok pedig a mérési eredményeket. A bemutatott példában most csak olyan kiugró értékek vannak jelölve, amelyek az értékek átlagát kimagaslóan meghaladják, tehát túllépik a megengedett felső határt. Az adatsor 321 db mérési eredményt tartalmazott, a megengedettől 15 érték tért el, ami azt jelenti, a mért adatok 5 %-át elvesztettük. Arra nem lehet iránymutatást adni, hogy egy adatsorból átlagos hány adat esik ki a kiugró értékek keresését követően, ugyanis ez legfőképpen a pályaszerkezet lokális hibáitól, valamint a mérés körülményeitől is függ, ami minden vizsgált útszakaszon más és más.
![]() |
Az adatsor kumulált összeggörbéjét az 2. ábrán láthatjuk. A példa jól szemlélteti, hogy a kumulált-szumma módszer szerint a vizsgált szakasz teherbírása meglehetősen inhomogén, a teljes szakaszt 6 homogén szakaszra kellene bontani. A görbére fektetett egyenesek irányának változása, illetve töréspontja utal a pályaszerkezet teherbíró-képességének inhomogenitására.
![]() |
Az elemzett útszakaszon a homogén szakaszokra osztás az előírás szerint, valamint a kumulált-összegek módszerével is meg lett határozva. A hazai szabályozásban foglaltakat követve a vizsgált szakasz teljesen egészében 1 db homogén szakasznak tekinthető. A kumulált-szumma módszerének elve alapján a példában bemutatott szakaszokat 3-4 homogén szakaszra lehetett bontani. A két módszer összehasonlítását a 3. ábra és 2. táblázat szemlélteti.
![]() |
Jellemzők | Előírás szerint | Kumulatív szumma módszer | |||
---|---|---|---|---|---|
1. alszakasz | 2. alszakasz | 3. alszakasz | 4. alszakasz | ||
Út száma | 21 | ||||
Szelvény | 33+100 – 34+800 | 33+100 – 33+649 | 33+697 – 34+598 | 34+649 – 34+800 | – |
Átlagos központi behajlás, μm | 200 | 193 | 201 | 213 | |
Szórás | 44 | 27 | 50 | 58 | |
Variancia | 0,22 | 0,14 | 0,25 | 0,27 | |
Út száma | 51 | ||||
Szelvény | 139+700 – 155+500 | 139+700 – 140+650 | 140+700 – 145+701 | 145+751 – 152+554 | 152+600 – 155+500 |
Átlagos központi behajlás, μm | 398 | 319 | 472 | 333 | 458 |
Szórás | 146 | 49 | 159 | 105 | 144 |
Variancia | 0,37 | 0,15 | 0,34 | 0,32 | 0,31 |
Út száma | 4 | ||||
Szelvény | 112+000 – 121+000 | 112+000 – 116+051 | 116+100 – 120+051 | 120+100 – 121+000 | – |
Átlagos központi behajlás, μm | 255 | 221 | 313 | 131 | |
Szórás | 93 | 62 | 86 | 25 | |
Variancia | 0,36 | 0,28 | 0,27 | 0,19 | |
Út száma | M15 | ||||
Szelvény | 0+850 – 13+725 | 0+825 – 3+174 | 3+225 – 8+975 | 9+025 – 13+725 | – |
Átlagos központi behajlás, μm | 202 | 156 | 248 | 172 | |
Szórás | 70 | 62 | 56 | 55 | |
Variancia | 0,34 | 0,39 | 0,23 | 0,32 |
A részszakaszok behajlásértékeinek átlaga, szórása és varianciája összehasonlítható az előírás alapján meghatározható értékekkel. A 2. táblázatban szereplő adatok azt mutatják, hogy a behajlások átlaga homogén szakaszonként jelentősen eltér egymástól, a legnagyobb érték meghaladja a legkisebb érték másfélszeresét. Az előírást követve a 4 út teljes tervezési szakaszát egy homogén szakasznak tekinthetnénk, ha annak átlagértékei alapján határoznánk meg a tervezési szakasz mértékadó behajlását, valamint a szükséges erősítőréteg vastagságát, akkor utanként 3-5 km-es szakaszok alul lennének méretezve, ami a tervezési szakaszok ~1/3-t jelenti. Ugyanígy fennáll a felülméretezés esete is, ettől a biztonság javára ugyan eltekinthetünk, de az indokolatlanul vastag pályaszerkezet a beruházás költségeit megnöveli. A variációs koefficiens értékeit áttekintve megállapítható, hogy a homogén szakaszra bontás hozzájárul a szakasz varianciájának csökkenéséhez.
A fenti példához hasonló esettel gyakran találkozhatunk. A kumulált-összegek módszerének alkalmazása a jelenlegihez képest egy precízebb méretezést tesz lehetővé, melynek segítségével csökkenthető a helytelen, alul-, illetve felülméretezés kockázata. Megfontolandó lenne a homogén szakaszok variációs koefficiensének szigorítása, vagy más módszer alkalmazása.
Homogén szakaszképzés mozgó átlagok differenciájának módszerével
A mozgó átlagot idősorok elemzéséhez használják, hogy kiszűrjék, vagy minimalizálják az adatsor elemeinek ingadozásaiból származó statisztikai zajokat. A mozgó átlag lényege, hogy adott intervallumon belül meghatározzák az elemek átlagértékét. A mozgó átlag az alábbi képlet szerint határozható meg.
\[y_{i}=\frac{1}{2q+1}\sum_{j=i-q}^{i+q}x_{j}\]
\[i=q+1, …, n-q\]
ahol, | |
\(s\) | statikus behajlás, mm, |
\(d_{0}\) | korrigált tárcsaközép-süllyedés,mm. |
A mozgó átlagot az adatsor elemein végighaladva kell megállapítani, figyelve arra, hogy a választott intervallum (q) kétszeresével rövidül az adatsor hossza.
A mozgó átlagok értékéből egyszerűen meghatározható a mozgó átlag abszolút különbsége. Az adatsor i-dik elemének abszolút differenciája, az i-dik elemet megelőző (i-d)-dik és követő (i+d)-dik elemek képlete a következő:
\[z_{i}=|y_{i-d}-y_{i+d}|\]
\[i=d+q+1, …, n-q-d\]
ahol, | |
\(z_{i}\) | i-dik elem mozgó átlaga, |
\(d\) | intervallum hossza. |
A mozgó átlagok abszolút különbségénél szintén rövidül az adatsor 2d db adattal. A q és d értéke tetszőlegesen vehető fel, akár meg is egyezhet. Az intervallum hosszának azonban több okból kifolyólag sem érdemes túl nagy számot felvenni, egyrészt rövid adatsornál nagy q és d esetén jelentős mennyiségű adatot vesztünk, másrészt a tág intervallum miatt a bemeneti adatok hirtelen megváltozása (értékük ugrása) nehezen jelenik meg.
Több kutató, úgy találta, hogy a mozgó átlagok abszolút különbsége alkalmas módszer a homogén szakaszok megállapítására [Thomas, 2004]. A korábban vizsgált útszakaszok homogén szakaszhatárait ezzel a módszerrel is megadtuk. Az intervallum választott hossza q=d=5, mert az adatvesztés ebben az esetben még nem jelentős, továbbá egyszerre 2q+1=11 db elem homogenitása lett vizsgálva. A mérési pontok 50 m-es gyakorisággal követték egymást, ezért 11 db*50 m=550 m hosszú szakaszok mozgó átlagait, és ezek abszolút különbségét számítottuk ki. Ahhoz, hogy a homogén szakaszok határait meg tudjuk adni, szükséges egy küszöbérték megállapítása. A szakirodalomban ez az érték nincs pontosan definiálva, csak annyi említés található, hogy ki kell kísérletezni azt a határértéket, amivel homogén szakaszok lehatárolhatók. A homogén szakaszképzésnél a mozgó átlagok abszolút különbségeinek küszöbérték alatti értékeivel nem foglalkozunk. Az abszolút különbségek görbéjének és a küszöbértéknek a közös diagramja az 5. ábrán látható. A görbe küszöbérték feletti hullámainak maximuma adja meg a homogén szakaszok határát.
![]() |
A vizsgált útszakaszok eredményei alapján, ha a küszöbérték az abszolút különbség maximumának 40-50 %-a körül van definiálva (0,4 … 0,5 *zmax), akkor a homogén szakaszok határai a kumulatív-szumma szerinti homogén szakaszhatárokkal azonos, vagy ahhoz közeli szelvénybe esnek. A 6. ábrán bemutatott példákon a küszöbértéknek az abszolút differenciák maximumának 45%-át választottuk. A 4. sz. főút esetén mind a két módszerrel azonos határokat kaptunk. A 2402. j. út azt példázza, hogy rövid (3-400 m-es) szakaszhosszak esetén is azonos szelvényre esnek a határok.
![]() |
A vizsgált szakaszoknál szerzett tapasztalatok szerint a küszöbértéket nem célszerű alacsonyabb értékre felvenni, mert akkor a homogén szakaszok hossza a szükséges technológiai hossz (3-500 m) alá rövidülhet, fordított esetben pedig beleeshetünk a jelenlegi előírás hibájába, vagyis inhomogén szakaszokat nyilváníthatunk homogénnek. A kumulatív-szumma és a mozgó átlagok abszolút különbségének módszerét összehasonlítva elmondható, hogy homogén szakaszhatárok azonos helyre esnek. A kumulatív-szumma módszerrel egyszerűbben meghatározhatók a szakaszhatárok, és a teljes adatsor elemezhető, nincs adatvesztés, nem úgy, mint a mozgó átlagok differenciájával.
Homogén szakaszképzés különböző értékek alapján
A homogén szakaszok elemzése során azt is vizsgáltam, hogy a méretezés alapjául szolgáló dinamikus behajlásmérés eredményeinek és az ennek megfeleltetett statikus behajlásértékek kumulatív összeggörbéjének iránytangensei, illetve töréspontjai egymáshoz képest változnak-e. Erre az adott okot, hogy a dinamikus behajlások statikus értékekké történő átszámításakor egy empirikus képletet alkalmazunk, ami a dinamikus értékeket sok esetben torzítja.
\[s=1,2*d_{0}-0,08\]
ahol, | |
\(s\) | statikus behajlás, mm, |
\(d_{0}\) | korrigált tárcsaközép-süllyedés,mm. |
Ha a mért behajlások értéke nagyon alacsony, akkor a képlet második felében szereplő negatív tag jelentősége megnő, ugyanis a dinamikus és az annak megfeleltetett statikus behajlás értéke között jelentős különbség tapasztalható. Pl.: a mért tárcsközép-süllyedés 150 μm = 0,15 mm, ekkor az átszámított statikus behajlás s = 1,2* 0,15 – 0,08 = 0,1 mm; tehát a statikus behajlás az eredeti érték 2/3-ra csökkent; míg egy 800 μm = 0,8 mm tarcsaközép-süllyedés esetén ez s = 1,2*0,8 – 0,08 = 0,88 mm adódik, ami 10 %-os növekedést jelent az eredetihez képest. Az elemzés elvégzésekor arra kerestem választ, hogy ez a torzulás megjelenik-e az adatsor homogén szakaszainak kijelölésekor.
A tervezési szakasz homogén alszakaszait többféle adat, érték alapján meg lehet határozni, pl: központi behajlás, behajlási teknő különböző paraméterei, IRI, stb. Adorjányi a behajlási teknők területindexének kumulált összeggörbéje szerint határozta meg a szakaszhatárokat [Adorjányi, 2009]. A cikk egyik tárgya a vizsgált útszakasz homogén szakaszhatárainak megállapítása néhány teknőparaméter, valamint a dinamikus és a megfeleltetett statikus központi behajlások figyelembe vételével. A választott teknőparaméterek:
- Felületi görbületi index
\[SCI=d_{0}-d_{300}\]
- Alap romlási index
\[BDI=d_{300}-d_{600}\]
- Alap görbületi index
\[BCI=d_{600}-d_{900}\]
-
- Területindex [Adorjányi; 2009]:
\[TP=\frac{1}{12}[d_{0}+1,25d_{300}+2,25d_{600}+1,5*(d_{200}+d_{450}+2*d_{900}+d_{1200})]\]
A szakaszhatárok a kumulatív-szumma görbe módszerét alkalmazva kerültek meghatározásra, a vizsgált útszakaszok közül kettő példa a 3. ábrán látható. A felső diagramokon a dinamikus és az abból számított statikus tárcsaközép-süllyedés szerinti szakaszhatárok vannak feltüntetve, a középsőkön a behajlásokból számítható indexek, az alsón szintén a behajlások értékéből meghatározható területindex kumulált összeggörbéje és az alszakaszok határai.
![]() |
Az összeggörbék irányváltásait, töréspontjait követve megállapítható, hogy azok azonos szelvényre esnek. Az elemzett szakaszok vizsgált paraméterek szerint képzett homogén alszakaszainak határai megegyeznek, ezért az a következtetés vonható le, hogy a behajlásértékekből értelmezett különböző paraméterek szerint ugyanazon homogén szakaszhatárok adhatók meg, mint a tárcsaközép-süllyedések alapján. Ehhez hasonlóan nem tapasztalható különbség a dinamikus, illetve a statikus központi behajlások kumulatív összeggörbéjének trendjénél. A fent említett átszámítás miatti torzító hatás a homogén szakasz képzésekor nem jelenik meg.
Összefoglalás
A cikk a pályaszerkezetek megerősítésének méretezésekor alkalmazott homogén teherbírású szakaszok képzésének problémájáról szólt. Az ÚT 2-1.202:2005 előírásban található kritérium nem túl szigorú, ezáltal gyakorta előfordul, hogy a behajlásmérés eredményeiből származtatható variancia értéke szerint a vizsgált útszakasz egy homogén szakaszként kezelhető tovább. Ha e vizsgált útszakaszok homogén alszakaszait más módszerrel, például kumulatív-szumma, vagy mozgó átlagok abszolút differenciája módszerrel osztjuk fel, akkor arra a következtetésre jutunk, hogy a vizsgált szakasz nem homogén. A vonatkozó előírás további problémája, hogy a dinamikus mérőberendezések elterjedése miatt megalkotott dinamikus-statikus átszámítási képlet negatív behajlásokat eredményezhet, melyek műszakilag értelmezhetetlenek, nem vehetők figyelembe a további számításokhoz
A cikk a behajlásmérési eredményekből származó paraméterek szerinti alszakaszképzéssel is foglalkozott, melynek eredményeként megállapítható, hogy a központi behajlást (dinamikus és az ebből átszámított statikus), SCI-t, BDI-t, BCI-t és területindexet alapul véve azonos alszakaszhatárok adhatók meg. A cikkben vizsgáltuk, hogyan alkalmazható a homogenitás vizsgálatok közé tartozó mozgó átlagok abszolút differenciájának módszere egy vizsgált szakasz homogén alszakaszokra bontására. A módszer egyik hátránya, hogy az elemzés során a vizsgált szakasz elejéről és végéről egyaránt elvesztünk néhány adatot. Másik hátránya, hogy a szakaszhatárok megállapításához szükség van egy küszöbérték megállapítására, melyet még pontosan nem definiáltak. A cikkben elemzett példáknál a dinamikus behajlások mozgó átlagai közötti abszolút különbségek maximumának 0,4-0,5-szörösét tekintettük küszöbértéknek, melyet összehasonlítva a kumulatív-szumma módszere szerinti szakaszhatárokkal, megállapítható, hogy ez a módszer is alkalmas alszakaszképzésre, a két módszerrel a szakaszhatárok közel azonos szelvényre estek. További vizsgálatok szükségesek a küszöbérték pontos definiálásához, ezt követően a mozgó átlagok abszolút differenciájának módszere is egy alternatív homogén alszakaszképzési eljárássá válhat.
Hivatkozások:
Adorjányi Kálmán: Bemenő paraméterek bővítése az aszfaltburkolatú pályaszerkezetek méretezésénél; Közlekedésépítési Szemle; 59. évf. 7. szám; pp.: 11-17; 2009
Boromisza Tibor, Dr.: Méretezési Praktikum, Aszfaltburkolatú útpályaszerkezetek méretezésének gyakorlata; Közúti Közlekedési Füzetek; 1997
COST 336 Use of Falling Weight Deflectometers in Pavement Evaluation; 2005
Fridtjof Thomas: Generating homogeneous road sections based on surface measurements: available methods; 2nd European Pavement and Asset Management Conference; Berlin, 2004
Gálai Antal: A Szmirnov-Kolgomorov próba – ahogy az alkalmazók mondták: – élesítése; Hidrológiai Közlöny; 87. évf. 4. szám; pp.: 57; 2007
Kosztka Miklós, Dr.; Péterfalvi József, Dr.: Hajlékony pályaszerkezetek tervezése erdészeti utakon, előadás
SN 640 733b Erhaltung von Fahrbahnen; Vereinigung Schweizerischer Strassenfachleute; 1997
ÚT 2-1.202 (e-UT 06.03.13) Aszfaltburkolatú útpályaszerkezetek méretezése és megerősítése; Útügyi Műszaki Előírás; 2005
Vasvári Gergely: Burkolat megerősítés, Úttervezés BSc jegyzet; BME Út és Vasútépítési Tanszék; 2012